
In this video we enhance our AI charged Postgres Data Analytics agent backed by GPT-4 and we make it MULTI-AGENT. By splitting up our BI analytics tool into separate agents we can assign individual roles as if our AI was a small working software data analytics company. We build a data analytics agent, a Sr Data Analytics agent, and a Product Manager Agent. Each agent has a specific role and we can assign them special functions that only they can run.
Of course, we utilize our favorite AI pair programming assistant AIDER to generate a first pass of our code in no time with the help of a couple prompt engineering techniques. We build in python and use poetry as our dependency manager. Our goal is to move closer to the future of AI engineering and build a fully functional AI powered data analytics tool with ZERO code. Agentic software is likely the future, so let’s stay on the edge of AI engineering and build a multi-agent data analytics tool with AutoGen.
Watch Part One – building a Postgres Data Analytics Agent From Scratch
https://youtu.be/jmDMusirPKA
AI Engineering Resources
Microsoft’s Autogen: https://microsoft.github.io/autogen/
Autogen group chat example: https://github.com/microsoft/autogen/blob/main/notebook/agentchat_groupchat_research.ipynb
AIDER: https://aider.chat/
Free Postgres Hosting With Neon: https://neon.tech/
ZERO Touch coding with AIDER?
https://youtu.be/MPYFPvxfGZs
Chapters
00:00 One MAJOR Problem
00:45 Okay so what is AutoGen?
02:00 Make our app Multi-Agent with AutoGen
05:00 Defining our agents
06:10 Let AI Code for you with AIDER
08:30 Half way there let’s clean it up
14:04 Our Multi-Agent Analytics App is Born
18:40 Is AutoGen The Future of AI Engineering?
20:30 AutoGen Pros
21:54 AutoGen Cons
23:10 My take and what’s next
tags
#dataanalytics #agentic #promptengineering
Take the opportunity to connect and share this video with your friends and family if you find it useful.
No Comments